

MAIMON RESEARCH LLC

**ARTIFICIAL INTELLIGENCE LARGE LANGUAGE
MODEL INTERROGATION**

**REPRESENTATIONAL MEASUREMENT FAILURE IN
HEALTH TECHNOLOGY ASSESSMENT**

**UNITED STATES: MEASUREMENT EVASION
WITH THE NATIONAL PHARMACEUTICAL
COUNCIL**

**Paul C Langley Ph.D Adjunct Professor, College of Pharmacy, University of
Minnesota, Minneapolis, MN**

LOGIT WORKING PAPER No 2 JANUARY 2026

www.maimonresearch.com

Tucson AZ

FOREWORD

HEALTH TECHNOLOGY ASSESSMENT: A GLOBAL SYSTEM OF NON-MEASUREMENT

This Logit Working Paper series documents a finding as extraordinary as it is uncomfortable: health technology assessment (HTA), across nations, agencies, journals, and decades, has developed as a global system of non-measurement. It speaks the language of numbers, models, utilities, QALYs, “value for money,” thresholds, discounting, incremental ratios, extrapolations, and simulations. It demands arithmetic at every turn, multiplication, division, summation, aggregation, discounting, yet it never once established that the quantities to which these operations are applied are measurable. HTA has built a vast evaluative machinery on foundations that do not exist. The probabilities and normalized logits in the reports that follow provide the empirical confirmation of this claim. They show, with unsettling consistency, that the global HTA knowledge base neither possesses nor applies the principles of scientific measurement.

The objective of this study is to assess whether the National Pharmaceutical Council (NPC) possesses, articulates, and applies the axioms of representational measurement required to support its quantitative claims in health technology assessment and value evaluation. Rather than reviewing NPC publications for methodological sophistication or policy relevance, the study interrogates the *knowledge base* that underwrites NPC’s use of numbers. Using a 24-item diagnostic instrument grounded in fundamental measurement theory, the analysis evaluates NPC’s implicit endorsement or rejection of propositions that determine whether arithmetic operations, addition, multiplication, aggregation, and modelling, are logically permissible. The purpose is not to assess whether NPC’s conclusions are reasonable or well intentioned, but whether they are *scientifically admissible* as quantitative claims.

A second, and equally important, objective is comparative and diagnostic: to locate NPC within the broader U.S. HTA epistemic ecosystem by identifying the specific points at which its institutional knowledge diverges from, or collapses against, the requirements of measurement. By converting qualitative institutional commitments into endorsement probabilities and normalized logits, the study moves beyond narrative critique to produce an explicit measurement profile. This profile allows NPC’s posture toward QALYs, cost-effectiveness analysis, patient-reported outcomes, and simulation modelling to be evaluated not as matters of opinion or best practice, but as testable indicators of measurement possession or non-possession.

The findings are unequivocal. NPC demonstrates selective endorsement of elementary measurement truisms that do not threaten prevailing HTA practices, while systematically rejecting or failing to endorse axioms that would invalidate QALYs, aggregated preference scores, and reference-case simulation outputs. High endorsement probabilities cluster around statements that preserve the operational viability of cost-effectiveness analysis, such as the summation of QALYs and the falsifiability of simulation models, while near-floor logits characterize all Rasch-related items and propositions asserting the primacy of measurement over arithmetic. The resulting profile is not one of random ignorance but of structured avoidance: NPC’s knowledge base is configured to accommodate critique at the level of ethics, heterogeneity, and process, while excluding the

foundational constraints that would force abandonment of false measurement. NPC thus emerges as a stabilizing institution for the existing U.S. HTA belief system rather than as a corrective.

The starting point is simple and inescapable: *measurement precedes arithmetic*. This principle is not a methodological preference but a logical necessity. One cannot multiply what one has not measured, cannot sum what has no dimensional homogeneity, cannot compare ratios when no ratio scale exists. When HTA multiplies time by utilities to generate QALYs, it is performing arithmetic with numbers that cannot support the operation. When HTA divides cost by QALYs, it is constructing a ratio from quantities that have no ratio properties. When HTA aggregates QALYs across individuals or conditions, it is combining values that do not share a common scale. These practices are not merely suboptimal; they are mathematically impossible.

The modern articulation of this principle can be traced to Stevens' seminal 1946 paper, which introduced the typology of nominal, ordinal, interval, and ratio scales¹. Stevens made explicit what physicists, engineers, and psychologists already understood: different kinds of numbers permit different kinds of arithmetic. Ordinal scales allow ranking but not addition; interval scales permit addition and subtraction but not multiplication; ratio scales alone support multiplication, division, and the construction of meaningful ratios. Utilities derived from multiattribute preference exercises, such as EQ-5D or HUI, are ordinal preference scores; they do not satisfy the axioms of interval measurement, much less ratio measurement. Yet HTA has, for forty years, treated these utilities as if they were ratio quantities, multiplying them by time to create QALYs and inserting them into models without the slightest recognition that scale properties matter. Stevens' paper should have blocked the development of QALYs and cost-utility analysis entirely. Instead, it was ignored.

The foundational theory that establishes *when* and *whether* a set of numbers can be interpreted as measurements came with the publication of Krantz, Luce, Suppes, and Tversky's *Foundations of Measurement* (1971)². Representational Measurement Theory (RMT) formalized the axioms under which empirical attributes can be mapped to numbers in a way that preserves structure. Measurement, in this framework, is not an act of assigning numbers for convenience, it is the discovery of a lawful relationship between empirical relations and numerical relations. The axioms of additive conjoint measurement, homogeneity, order, and invariance specify exactly when interval scales exist. RMT demonstrated once and for all that measurement is not optional and not a matter of taste: either the axioms hold and measurement is possible, or the axioms fail and measurement is impossible. Every major construct in HTA, utilities, QALYs, DALYs, ICERs, incremental ratios, preference weights, health-state indices, fails these axioms. They lack unidimensionality; they violate independence; they depend on aggregation of heterogeneous attributes; they collapse under the requirements of additive conjoint measurement. Yet HTA proceeded, decade after decade, without any engagement with these axioms, as if the field had collectively decided that measurement theory applied everywhere except in the evaluation of therapies.

Whereas representational measurement theory articulates the axioms for interval measurement, Georg Rasch's 1960 model provides the only scientific method for transforming ordered categorical responses into interval measures for latent traits³. Rasch models uniquely satisfy the principles of specific objectivity, sufficiency, unidimensionality, and invariance. For any construct

such as pain, fatigue, depression, mobility, or need, Rasch analysis is the only legitimate means of producing an interval scale from ordinal item responses. Rasch measurement is not an alternative to RMT; it is its operational instantiation. The equivalence of Rasch's axioms and the axioms of representational measurement was demonstrated by Wright, Andrich and others as early as the 1970s. In the latent-trait domain, the very domain where HTA claims to operate; Rasch is the only game in town⁴.

Yet Rasch is effectively absent from all HTA guidelines, including NICE, PBAC, CADTH, ICER, SMC, and PHARMAC. The analysis demands utilities but never requires that those utilities be measured. They rely on multiattribute ordinal classifications but never understand that those constructs be calibrated on interval or ratio scales. They mandate cost-utility analysis but never justify the arithmetic. They demand modelled QALYs but never interrogate their dimensional properties. These guidelines do not misunderstand Rasch; they do not know it exists. The axioms that define measurement and the model that makes latent trait measurement possible are invisible to the authors of global HTA rules. The field has evolved without the science that measurement demands.

How did HTA miss the bus so thoroughly? The answer lies in its historical origins. In the late 1970s and early 1980s, HTA emerged not from measurement science but from welfare economics, decision theory, and administrative pressure to control drug budgets. Its core concern was *valuing health states*, not *measuring health*. This move, quiet, subtle, but devastating, shifted the field away from the scientific question "What is the empirical structure of the construct we intend to measure?" and toward the administrative question "How do we elicit a preference weight that we can multiply by time?" The preference-elicitation projects of that era (SG, TTO, VAS) were rationalized as measurement techniques, but they never satisfied measurement axioms. Ordinal preferences were dressed up as quasi-cardinal indices; valuation tasks were misinterpreted as psychometrics; analyst convenience replaced measurement theory. The HTA community built an entire belief system around the illusion that valuing health is equivalent to measuring health. It is not.

The endurance of this belief system, forty years strong and globally uniform, is not evidence of validity but evidence of institutionalized error. HTA has operated under conditions of what can only be described as *structural epistemic closure*: a system that has never questioned its constructs because it never learned the language required to ask the questions. Representational measurement theory is not taught in graduate HTA programs; Rasch modelling is not part of guideline development; dimensional analysis is not part of methodological review. The field has been insulated from correction because its conceptual foundations were never laid. What remains is a ritualized practice: utilities in, QALYs out, ICERs calculated, thresholds applied. The arithmetic continues because everyone assumes someone else validated the numbers.

This Logit Working Paper series exposes, through probabilistic and logit-based interrogations of AI large language national knowledge bases, the scale of this failure. The results display a global pattern: true statements reflecting the axioms of measurement receive weak endorsement; false statements reflecting the HTA belief system receive moderate or strong reinforcement. This is not disagreement. It is non-possession. It shows that HTA, worldwide, has developed as a quantitative discipline without quantitative foundations; a confused exercise in numerical storytelling.

The conclusion is unavoidable: HTA does not need incremental reform; it needs a scientific revolution. Measurement must precede arithmetic. Representational axioms must precede valuation rituals. Rasch measurement must replace ordinal summation and utility algorithms. Value claims must be falsifiable, protocol-driven, and measurable; rather than simulated, aggregated, and numerically embellished.

The global system of non-measurement is now visible. The task ahead is to replace it with science.

Paul C Langley, Ph.D

Email: langleylapaloma@gmail.com

DISCLAIMER

This analysis is generated through the structured interrogation of a large language model (LLM) applied to a defined documentary corpus and is intended solely to characterize patterns within an aggregated knowledge environment. It does identify, assess, or attribute beliefs, intentions, competencies, or actions to any named individual, faculty member, student, administrator, institution, or organization. The results do not constitute factual findings about specific persons or programs, nor should they be interpreted as claims regarding professional conduct, educational quality, or compliance with regulatory or accreditation standards. All probabilities and logit values reflect model-based inferences about the presence or absence of concepts within a bounded textual ecosystem, not judgments about real-world actors. The analysis is exploratory, interpretive, and methodological in nature, offered for scholarly discussion of epistemic structures rather than evaluative or legal purposes. Any resemblance to particular institutions or practices is contextual and non-attributive, and no adverse implication should be inferred.

1. INTERROGATING THE LARGE LANGUAGE MODEL

A large language model (LLM) is an artificial intelligence system designed to understand, generate, and manipulate human language by learning patterns from vast amounts of text data. Built on deep neural network architectures, most commonly transformers, LLMs analyze relationships between words, sentences, and concepts to produce contextually relevant responses. During training, the model processes billions of examples, enabling it to learn grammar, facts, reasoning patterns, and even subtle linguistic nuances. Once trained, an LLM can perform a wide range of tasks: answering questions, summarizing documents, generating creative writing, translating languages, assisting with coding, and more. Although LLMs do not possess consciousness or true understanding, they simulate comprehension by predicting the most likely continuation of text based on learned patterns. Their capabilities make them powerful tools for communication, research, automation, and decision support, but they also require careful oversight to ensure accuracy, fairness, privacy, and responsible use.

In this Logit Working Paper, “interrogation” refers not to discovering what an LLM *believes*, it has no beliefs, but to probing the content of the *corpus-defined knowledge space* we choose to analyze. This knowledge base is enhanced if it is backed by accumulated memory from the user. In this case the interrogation relies also on 12 months of HTA memory from continued application of the system to evaluate HTA experience. The corpus is defined before interrogation: it may consist of a journal (e.g., *Value in Health*), a national HTA body, a specific methodological framework, or a collection of policy documents. Once the boundaries of that corpus are established, the LLM is used to estimate the conceptual footprint within it. This approach allows us to determine which principles are articulated, neglected, misunderstood, or systematically reinforced.

In this HTA assessment, the objective is precise: to determine the extent to which a given HTA knowledge base or corpus, global, national, institutional, or journal-specific, recognizes and reinforces the foundational principles of representational measurement theory (RMT). The core principle under investigation is that measurement precedes arithmetic; no construct may be treated as a number or subjected to mathematical operations unless the axioms of measurement are satisfied. These axioms include unidimensionality, scale-type distinctions, invariance, additivity, and the requirement that ordinal responses cannot lawfully be transformed into interval or ratio quantities except under Rasch measurement rules.

The HTA knowledge space is defined pragmatically and operationally. For each jurisdiction, organization, or journal, the corpus consists of:

- published HTA guidelines
- agency decision frameworks
- cost-effectiveness reference cases
- academic journals and textbooks associated with HTA
- modelling templates, technical reports, and task-force recommendations
- teaching materials, methodological articles, and institutional white papers

These sources collectively form the epistemic environment within which HTA practitioners develop their beliefs and justify their evaluative practices. The boundary of interrogation is thus

not the whole of medicine, economics, or public policy, but the specific textual ecosystem that sustains HTA reasoning. . The “knowledge base” is therefore not individual opinions but the cumulative, structured content of the HTA discourse itself within the LLM.

DEFINITION THE NATIONAL PHARMACEUTICAL COUNCIL KNOWLEDGE BASE

The knowledge base used in this assessment consists of the publicly accessible corpus of NPC outputs that frame, justify, or operationalize quantitative value assessment in the United States. This includes NPC white papers, methodological guidance documents, policy briefs, and web-based materials describing “value assessment,” “patient-centered value,” cost-effectiveness analysis, and the role of health economic models in decision making. The corpus is not restricted to technical appendices or academic citations; it explicitly includes high-level framing language, definitions, and normative claims, on the grounds that institutional knowledge is revealed as much by what is *asserted* and *taken for granted* as by what is formally derived.

This corpus is evaluated against a fixed external standard: the axioms of representational measurement theory and the associated scale-type requirements for arithmetic operations. These axioms are not derived from NPC’s own methodological preferences, nor from contemporary HTA consensus statements, but from established measurement theory that predates and stands independently of health economics. Central among these are the requirements of unidimensionality, invariance, dimensional homogeneity, and the distinction between ordinal, interval, and ratio scales. The knowledge base is therefore assessed asymmetrically: NPC is not judged by its internal consistency or rhetorical coherence, but by its conformity to the necessary conditions for quantitative meaning.

The 24-item diagnostic instrument operationalizes this assessment by translating foundational measurement propositions into testable statements. Each statement is classified as true or false according to representational measurement theory, not according to prevailing HTA practice. Endorsement probabilities reflect the extent to which NPC’s published discourse aligns with the correct response, as inferred from explicit claims, repeated methodological commitments, and the routine use or rejection of specific constructs such as QALYs, aggregated utilities, summed PRO scores, and simulation-derived outcomes. Normalized logits provide a linearized representation of this alignment, allowing patterns of knowledge possession and avoidance to be identified across the full instrument.

Importantly, the knowledge base includes NPC’s treatment of patient-reported outcomes and “patient-centered value,” areas in which NPC is particularly active rhetorically. These materials are evaluated not for their ethical intent or inclusiveness, but for whether they acknowledge the measurement problem inherent in latent constructs. The absence of Rasch measurement, conjoint measurement, or any explicit invariance testing within NPC’s discourse is treated as substantive evidence of non-possession, not as a neutral omission. In measurement theory, silence on axioms where arithmetic is performed is itself a claim.

Finally, the knowledge base is interpreted institutionally rather than individually. The assessment does not attribute endorsement probabilities to specific authors or documents, but to NPC as a

coherent epistemic actor. The resulting profile should therefore be understood as a characterization of NPC's *institutional knowledge structure*: the set of propositions it reinforces, tolerates, or excludes in order to sustain its role in U.S. value assessment.

CATEGORICAL PROBABILITIES

In the present application, the interrogation is tightly bounded. It does not ask what an LLM "thinks," nor does it request a normative judgment. Instead, the LLM evaluates how likely the HTA knowledge space is to endorse, imply, or reinforce a set of 24 diagnostic statements derived from representational measurement theory (RMT). Each statement is objectively TRUE or FALSE under RMT. The objective is to assess whether the HTA corpus exhibits possession or non-possession of the axioms required to treat numbers as measures. The interrogation creates a categorical endorsement probability: the estimated likelihood that the HTA knowledge base endorses the statement whether it is true or false; *explicitly or implicitly*.

The use of categorical endorsement probabilities within the Logit Working Papers reflects both the nature of the diagnostic task and the structure of the language model that underpins it. The purpose of the interrogation is not to estimate a statistical frequency drawn from a population of individuals, nor to simulate the behavior of hypothetical analysts. Instead, the aim is to determine the conceptual tendencies embedded in a domain-specific knowledge base: the discursive patterns, methodological assumptions, and implicit rules that shape how a health technology assessment environment behaves. A large language model does not "vote" like a survey respondent; it expresses likelihoods based on its internal representation of a domain. In this context, endorsement probabilities capture the strength with which the knowledge base, as represented within the model, supports a particular proposition. Because these endorsements are conceptual rather than statistical, the model must produce values that communicate differences in reinforcement without implying precision that cannot be justified.

This is why categorical probabilities are essential. Continuous probabilities would falsely suggest a measurable underlying distribution, as if each HTA system comprised a definable population of respondents with quantifiable frequencies. But large language models do not operate on that level. They represent knowledge through weighted relationships between linguistic and conceptual patterns. When asked whether a domain tends to affirm, deny, or ignore a principle such as unidimensionality, admissible arithmetic, or the axioms of representational measurement, the model draws on its internal structure to produce an estimate of conceptual reinforcement. The precision of that estimate must match the nature of the task. Categorical probabilities therefore provide a disciplined and interpretable way of capturing reinforcement strength while avoiding the illusion of statistical granularity.

The categories used, values such as 0.05, 0.10, 0.20, 0.50, 0.75, 0.80, and 0.85, are not arbitrary. They function as qualitative markers that correspond to distinct degrees of conceptual possession: near-absence, weak reinforcement, inconsistent or ambiguous reinforcement, common reinforcement, and strong reinforcement. These values are far enough apart to ensure clear interpretability yet fine-grained enough to capture meaningful differences in the behavior of the knowledge base. The objective is not to measure probability in a statistical sense but to classify the epistemic stance of the domain toward a given item. A probability of 0.05 signals that the

knowledge base almost never articulates or implies the correct response under measurement theory, whereas 0.85 indicates that the domain routinely reinforces it. Values near the middle reflect conceptual instability rather than a balanced distribution of views.

Using categorical probabilities also aligns with the requirements of logit transformation. Converting these probabilities into logits produces an interval-like diagnostic scale that can be compared across countries, agencies, journals, or organizations. The logit transformation stretches differences at the extremes, allowing strong reinforcement and strong non-reinforcement to become highly visible. Normalizing logits to the fixed ± 2.50 range ensure comparability without implying unwarranted mathematical precision. Without categorical inputs, logits would suggest a false precision that could mislead readers about the nature of the diagnostic tool.

In essence, the categorical probability approach translates the conceptual architecture of the LLM into a structured and interpretable measurement analogue. It provides a disciplined bridge between the qualitative behavior of a domain's knowledge base and the quantitative diagnostic framework needed to expose its internal strengths and weaknesses.

The LLM computes these categorical probabilities from three sources:

- 1. Structural content of HTA discourse**

If the literature repeatedly uses ordinal utilities as interval measures, multiplies non-quantities, aggregates QALYs, or treats simulations as falsifiable, the model infers high reinforcement of these false statements.

- 2. Conceptual visibility of measurement axioms**

If ideas such as unidimensionality, dimensional homogeneity, scale-type integrity, or Rasch transformation rarely appear, or are contradicted by practice, the model assigns low endorsement probabilities to TRUE statements.

- 3. The model's learned representation of domain stability**

Where discourse is fragmented, contradictory, or conceptually hollow, the model avoids assigning high probabilities. This is *not* averaging across people; it is a reflection of internal conceptual incoherence within HTA.

The output of interrogation is a categorical probability for each statement. Probabilities are then transformed into logits [$\ln(p/(1-p))$], capped to ± 4.0 logits to avoid extreme distortions, and normalized to ± 2.50 logits for comparability across countries. A positive normalized logit indicates reinforcement in the knowledge base. A negative logit indicates weak reinforcement or conceptual absence. Values near zero logits reflect epistemic noise.

Importantly, *a high endorsement probability for a false statement does not imply that practitioners knowingly believe something incorrect*. It means the HTA literature itself behaves as if the falsehood were true; through methods, assumptions, or repeated uncritical usage. Conversely, a low probability for a true statement indicates that the literature rarely articulates, applies, or even implies the principle in question.

The LLM interrogation thus reveals structural epistemic patterns in HTA: which ideas the field possesses, which it lacks, and where its belief system diverges from the axioms required for

scientific measurement. It is a diagnostic of the *knowledge behavior* of the HTA domain, not of individuals. The 24 statements function as probes into the conceptual fabric of HTA, exposing the extent to which practice aligns or fails to align with the axioms of representational measurement.

INTERROGATION STATEMENTS

Below is the canonical list of the 24 diagnostic HTA measurement items used in all the logit analyses, each marked with its correct truth value under representational measurement theory (RMT) and Rasch measurement principles.

This is the definitive set used across the Logit Working Papers.

Measurement Theory & Scale Properties

1. Interval measures lack a true zero — TRUE
2. Measures must be unidimensional — TRUE
3. Multiplication requires a ratio measure — TRUE
4. Time trade-off preferences are unidimensional — FALSE
5. Ratio measures can have negative values — FALSE
6. EQ-5D-3L preference algorithms create interval measures — FALSE
7. The QALY is a ratio measure — FALSE
8. Time is a ratio measure — TRUE

Measurement Preconditions for Arithmetic

9. Measurement precedes arithmetic — TRUE
10. Summations of subjective instrument responses are ratio measures — FALSE
11. Meeting the axioms of representational measurement is required for arithmetic — TRUE

Rasch Measurement & Latent Traits

12. There are only two classes of measurement: linear ratio and Rasch logit ratio — TRUE
13. Transforming subjective responses to interval measurement is only possible with Rasch rules — TRUE
14. Summation of Likert question scores creates a ratio measure — FALSE

Properties of QALYs & Utilities

15. The QALY is a dimensionally homogeneous measure — FALSE
16. Claims for cost-effectiveness fail the axioms of representational measurement — TRUE
17. QALYs can be aggregated — FALSE

Falsifiability & Scientific Standards

18. Non-falsifiable claims should be rejected — TRUE
19. Reference-case simulations generate falsifiable claims — FALSE

Logit Fundamentals

20. The logit is the natural logarithm of the odds-ratio — TRUE

Latent Trait Theory

21. The Rasch logit ratio scale is the only basis for assessing therapy impact for latent traits — TRUE

22. A linear ratio scale for manifest claims can always be combined with a logit scale — FALSE

23. The outcome of interest for latent traits is the possession of that trait — TRUE

24. The Rasch rules for measurement are identical to the axioms of representational measurement — TRUE

AI LARGE LANGUAGE MODEL STATEMENTS: TRUE OR FALSE

Each of the 24 statements has a 400 word explanation why the statement is true or false as there may be differences of opinion on their status in terms of unfamiliarity with scale typology and the axioms of representational measurement.

The link to these explanations is: <https://maimonresearch.com/ai-llm-true-or-false/>

INTERPRETING TRUE STATEMENTS

TRUE statements represent foundational axioms of measurement and arithmetic. Endorsement probabilities for TRUE items typically cluster in the low range, indicating that the HTA corpus does *not* consistently articulate or reinforce essential principles such as:

- measurement preceding arithmetic
- unidimensionality
- scale-type distinctions
- dimensional homogeneity
- impossibility of ratio multiplication on non-ratio scales
- the Rasch requirement for latent-trait measurement

Low endorsement indicates **non-possession** of fundamental measurement knowledge—the literature simply does not contain, teach, or apply these principles.

INTERPRETING FALSE STATEMENTS

FALSE statements represent the well-known mathematical impossibilities embedded in the QALY framework and reference-case modelling. Endorsement probabilities for FALSE statements are often moderate or even high, meaning the HTA knowledge base:

- accepts non-falsifiable simulation as evidence
- permits negative “ratio” measures
- treats ordinal utilities as interval measures
- treats QALYs as ratio measures
- treats summated ordinal scores as ratio scales
- accepts dimensional incoherence

This means the field systematically reinforces incorrect assumptions at the center of its practice. *Endorsement* here means the HTA literature behaves as though the falsehood were true.

2. SUMMARY OF FINDINGS FOR TRUE AND FALSE ENDORSEMENTS: NATIONAL PHARMACEUTICAL COUNCIL

Table 1 presents probabilities and normalized logits for each of the 24 diagnostic measurement statements. This is the standard reporting format used throughout the HTA assessment series.

It is essential to understand how to interpret these results.

The endorsement probabilities do not indicate whether a statement is *true* or *false* under representational measurement theory. Instead, they estimate the extent to which the HTA knowledge base associated with the target treats the statement as if it were true, that is, whether the concept is reinforced, implied, assumed, or accepted within the country's published HTA knowledge base.

The logits provide a continuous, symmetric scale, ranging from +2.50 to -2.50, that quantifies the degree of this endorsement. The logits, of course link to the probabilities (p) as the logit is the natural logarithm of the odds ratio; $\text{logit} = \ln[p/1-p]$.

- Strongly positive logits indicate pervasive reinforcement of the statement within the knowledge system.
- Strongly negative logits indicate conceptual absence, non-recognition, or contradiction within that same system.
- Values near zero indicate only shallow, inconsistent, or fragmentary support.

Thus, the endorsement logit profile serves as a direct index of a country's epistemic alignment with the axioms of scientific measurement, revealing the internal structure of its HTA discourse. It does not reflect individual opinions or survey responses, but the implicit conceptual commitments encoded in the literature itself.

TABLE 1: ITEM STATEMENT, RESPONSE, ENDORSEMENT AND NORMALIZED LOGITS NATIONAL PHARMACEUTICAL COUNCIL

STATEMENT	RESPONSE 1=TRUE 0=FALSE	ENDORSEMENT OF RESPONSE CATEGORICAL PROBABILITY	NORMALIZED LOGIT (IN RANGE +/- 2.50)
INTERVAL MEASURES LACK A TRUE ZERO	1	0.25	-1.10
MEASURES MUST BE UNIDIMENSIONAL	1	0.30	-0.85
MULTIPLICATION REQUIRES A RATIO MEASURE	1	0.20	-1.40
TIME TRADE-OFF PREFERENCES ARE UNIDIMENSIONAL	0	0.85	+1.75

RATIO MEASURES CAN HAVE NEGATIVE VALUES	0	0.90	+2.20
EQ-5D-3L PREFERENCE ALGORITHMS CREATE INTERVAL MEASURES	0	0.90	+2.20
THE QALY IS A RATIO MEASURE	0	0.90	+2.20
TIME IS A RATIO MEASURE	1	0.95	+2.50
MEASUREMENT PRECEDES ARITHMETIC	1	0.20	-1.40
SUMMATIONS OF SUBJECTIVE INSTRUMENT RESPONSES ARE RATIO MEASURES	0	0.85	+1.75
MEETING THE AXIOMS OF REPRESENTATIONAL MEASUREMENT IS REQUIRED FOR ARITHMETIC	1	0.20	-1.40
THERE ARE ONLY TWO CLASSES OF MEASUREMENT LINEAR RATIO AND RASCH LOGIT RATIO	1	0.10	-2.20
TRANSFORMING SUBJECTIVE RESPONSES TO INTERVAL MEASUREMENT IS ONLY POSSIBLE WITH RASH RULES	1	0.10	-2.20
SUMMATION OF LIKERT QUESTION SCORES CREATES A RATIO MEASURE	0	0.90	+2.20
THE QALY IS A DIMENSIONALLY HOMOGENEOUS MEASURE	0	0.85	+1.75
CLAIMS FOR COST-EFFECTIVENESS FAIL THE AXIOMS OF REPRESENTATIONAL MEASUREMENT	1	0.25	-1.10
QALYS CAN BE AGGREGATED	0	0.95	+2.50
NON-FALSIFIABLE CLAIMS SHOULD BE REJECTED	1	0.80	+1.40
REFERENCE CASE SIMULATIONS GENERATE FALSIFIABLE CLAIMS	0	0.85	+1.75
THE LOGIT IS THE NATURAL LOGARITHM OF THE ODDS-RATIO	1	0.70	+0.85
THE RASCH LOGIT RATIO SCALE IS THE ONLY BASIS FOR ASSESSING THERAPY IMPACT FOR LATENT TRAITS	1	0.05	-2.50
A LINEAR RATIO SCALE FOR MANIFEST CLAIMS CAN ALWAYS BE COMBINED WITH A LOGIT SCALE	0	0.60	+0.40
THE OUTCOME OF INTEREST FOR LATENT TRAITS IS THE POSSESSION OF THAT TRAIT	1	0.30	-0.85

THE RASCH RULES FOR MEASUREMENT ARE IDENTICAL TO THE AXIOMS OF REPRESENTATIONAL MEASUREMENT	1	0.05	-2.50
---	---	------	-------

UNITED STATES: THE NATIONAL PHARMACEUTICAL COUNCIL AS A STABILIZER OF NON-MEASUREMENT

The National Pharmaceutical Council occupies a distinctive and influential position within the United States health policy ecosystem. Unlike regulatory agencies, payers, or formal HTA bodies, NPC presents itself as an analytic convener: a forum for evidence, a translator between research and decision making, and a neutral platform for advancing “value” discussions. This self-presentation is precisely why NPC matters epistemically. Institutions that claim neutrality while shaping analytic norms exert influence not by decree, but by normalization. The 24-item diagnostic demonstrates that NPC has normalized a belief system in which arithmetic is privileged, modeling is treated as evidentiary, and measurement is subordinated to institutional convenience.

The defining feature of the NPC profile is not confusion but coherence. The organization simultaneously endorses the arithmetic outputs of health technology assessment while rejecting the axioms that determine whether those outputs are meaningful. The proposition that measurement must precede arithmetic sits at $p = 0.20$ with a logit of -1.40 . Multiplication requires a ratio measure sits at the same level. These are not borderline values. They indicate a systematic refusal to treat measurement as a gatekeeping condition. Arithmetic is permitted first; meaning is assumed later, if at all.

This inversion explains NPC’s comfort with cost-effectiveness analysis as an organizing framework. Cost-effectiveness depends on dividing cost by effect, typically expressed in QALYs. Yet NPC strongly endorses the propositions required to sustain that denominator while denying the conditions under which it would be admissible. The belief that QALYs are ratio measures sits at $p = 0.90$ (+2.20). The belief that EQ-5D algorithms create interval measures sits at $p = 0.90$ (+2.20). The belief that ratio measures can take negative values also sits at +2.20. These are not peripheral assumptions. They are the structural supports of the entire evaluative apparatus NPC promotes in its reports, convenings, and methodological guidance.

Unidimensionality illustrates the same pattern. Measures must be unidimensional sits at $p = 0.30$ (-0.85), while time trade-off preferences are treated as unidimensional at $p = 0.85$ (+1.75). This contradiction is never resolved empirically. It is resolved institutionally. Multiattribute constructs are declared unidimensional by fiat because they must be in order for the arithmetic to proceed. NPC’s analytic outputs rarely interrogate dimensional structure, because doing so would destabilize the instruments on which its value narratives depend.

The treatment of subjective instruments is even more revealing. Summation of Likert scores creating ratio measures is endorsed at $p = 0.90$ (+2.20). Summation of subjective instrument

responses as ratio measures sits at $p = 0.85$ (+1.75). These endorsements signal that NPC treats scoring as measurement. Ordinal categories are assumed to carry equal intervals, invariance, and meaningful zero points simply because numbers are attached. This belief allows patient-reported outcomes to be averaged, multiplied by time, and inserted into models without ever being measured.

At the same time, NPC's rejection of Rasch measurement is categorical. Every Rasch-related proposition collapses to the floor of the scale. The claim that there are only two admissible classes of measurement—linear ratio scales for manifest attributes and Rasch logit ratio scales for latent traits—sits at $p = 0.10$ (-2.20). The claim that transforming subjective responses to interval measurement is only possible with Rasch rules also sits at -2.20. The claim that the Rasch logit ratio scale is the only basis for assessing therapy impact for latent traits collapses further to -2.50. These values do not indicate neglect; they indicate structural exclusion.

This exclusion is decisive because Rasch measurement is the only framework capable of producing invariant measures of latent trait possession. By rejecting Rasch while endorsing summation, NPC institutionalizes pseudo-measurement as analytic currency. Latent traits are invoked rhetorically, need fulfillment, burden, functioning, but never measured. The outcome of interest for latent traits being possession of that trait sits at $p = 0.30$ (-0.85). NPC prefers to talk about changes in scores and modeled utilities rather than confronting the question of how much of an attribute a population possesses.

NPC's relationship to falsification further illustrates the problem. The organization endorses the principle that non-falsifiable claims should be rejected at $p = 0.80$ (+1.40). This aligns rhetorically with scientific norms. Yet NPC simultaneously endorses the belief that reference-case simulations generate falsifiable claims at $p = 0.85$ (+1.75). They do not. Simulation outputs are conditional projections derived from assumptions, many of which rest on non-measured quantities. Sensitivity analysis explores model behavior; it does not expose claims to empirical refutation. NPC resolves this contradiction by redefining falsification as robustness within a model rather than vulnerability to being wrong in the world.

The presence of technical knowledge does not mitigate the failure. Recognition that the logit is the natural logarithm of the odds ratio sits at $p = 0.70$ (+0.85). Mathematical fluency exists. Measurement discipline does not. Knowledge is compartmentalized so that it cannot threaten the analytic status quo.

What the logit profile exposes is NPC's true function. It is not a corrective to flawed HTA practice. It is a stabilizer. By convening stakeholders around shared modeling conventions, by publishing analyses that presuppose utilities and QALYs, and by framing these constructs as pragmatic tools rather than measurement claims, NPC amplifies a memeplex that treats arithmetic as evidence and measurement as optional. This is not accidental. It is how institutional ecosystems preserve themselves.

The consequences are not abstract. NPC-endorsed analyses influence payer policy, formulary discussions, and pricing narratives. When those analyses rest on non-measures, the resulting decisions are insulated from scientific challenge. Claims cannot be falsified because there is no

invariant quantity to test. Disagreement becomes negotiation; evidence becomes consensus. The evolution of objective knowledge is replaced by the stabilization of belief.

If NPC were to accept the implications of representational measurement theory, its analytic framework would collapse. Utilities, QALYs, ICERs, and long-horizon reference-case models would have to be reclassified as descriptive constructs without evidentiary authority. Latent traits would require Rasch measurement. Manifest claims would have to be confined to linear ratio scales. Aggregation would be prohibited unless dimensional homogeneity were demonstrated. NPC has chosen the alternative path: preserve the arithmetic by denying the axioms.

The conclusion is therefore unavoidable. The National Pharmaceutical Council does not merely reflect the measurement failure of U.S. health technology assessment. It actively stabilizes and legitimizes it. The probabilities and canonical logits do not describe a field in transition. They describe an institution that has resolved the tension between scientific measurement and policy convenience by rejecting measurement and retaining the appearance of quantitative rigor.

WHAT ARE THE EPISTEMIC OPTIONS FOR THE NATIONAL PHARMACEUTICAL COUNCIL

The question of whether the National Pharmaceutical Council (NPC) has a future cannot be answered by appeals to institutional history, influence, or stakeholder relevance. It can only be answered epistemically. Institutions endure in science-adjacent domains only insofar as the analytical functions they perform remain defensible under the rules that govern the production of objective knowledge. The present diagnostic assessment makes clear that NPC's current analytical posture rests on a belief system that systematically violates the axioms of representational measurement while simultaneously relying on the arithmetic those axioms alone license. Once this contradiction is exposed, the issue is no longer whether NPC is useful, but whether it can adapt to the consequences of being wrong in a non-negotiable sense.

The first epistemic option available to NPC is denial through continuation. This is the default path followed by most institutions confronted with foundational critique. Under this option, NPC would continue to endorse cost-effectiveness modeling, QALYs, ICERs, and reference-case simulations while treating measurement theory as either irrelevant or “too theoretical” for practical decision-making. This strategy relies on inertia rather than argument. It assumes that alignment with payer expectations, historical precedent, and international practice will continue to shield the organization from scrutiny. The problem with this option is that it offers no internal mechanism for correction. Once arithmetic without measurement is normalized, no empirical result can falsify the framework, because the framework does not recognize the conditions under which falsification could occur. Continuation therefore secures short-term institutional stability at the cost of long-term epistemic collapse. NPC would persist, but only as a producer of numerical artifacts whose scientific legitimacy steadily erodes.

The second option is rhetorical accommodation without structural change. Here, NPC would acknowledge “measurement concerns” in language while preserving its core analytic machinery. This would take the familiar form of adding caveats, emphasizing uncertainty, expanding sensitivity analyses, or gesturing toward patient-centeredness without altering the quantitative

foundations of its claims. This option is attractive because it creates the appearance of responsiveness while avoiding confrontation with the implications of representational measurement theory. Yet this strategy fails for the same reason as the first. Measurement axioms are not preferences that can be partially satisfied; they are gatekeeping conditions. One cannot meaningfully multiply, aggregate, or threshold quantities that are not measures. Rhetorical accommodation therefore changes nothing of substance. It merely delays the reckoning while further entrenching the memeplex you have identified.

The third option is epistemic partitioning. Under this approach, NPC would explicitly reclassify its outputs, distinguishing between descriptive modeling exercises and evidentiary claims. Simulation outputs, scenario analyses, and reference-case projections would be labeled as exploratory or illustrative rather than as decision variables. Quantitative authority would be withdrawn from ICERs, thresholds, and aggregate “value” scores. This option would represent a significant retreat from NPC’s current role in pricing and access debates, but it would restore intellectual honesty. NPC could continue to convene discussions, explore trade-offs, and map consequences without claiming that its numbers represent measured quantities. While this option preserves institutional relevance, it requires NPC to relinquish analytic authority. It would no longer be able to claim that its outputs determine value in any scientific sense.

The fourth option is reconstruction around admissible measurement. This is the only path that preserves both relevance and legitimacy, and it is also the most disruptive. Reconstruction would require NPC to accept, explicitly and operationally, that only two classes of quantitative claims are admissible. Manifest attributes must be expressed on linear ratio scales with a true zero and invariant units. Latent attributes must be expressed on Rasch logit ratio scales with demonstrated unidimensionality and invariance. Composite constructs such as utilities, QALYs, and ICERs would have to be abandoned as decision variables. Reference-case models would be abandoned. Formulary and pricing discussions would shift from imagined aggregate value to empirically evaluable single-attribute claims supported by prospective protocols.

This option would fundamentally change NPC’s relationship with manufacturers, payers, and policymakers. It would require new submission standards, new evaluation criteria, and new expectations of evidence. It would also expose large portions of the existing HTA literature as non-cumulative. The resistance to such a shift would be immense, not because the axioms are controversial, but because their implications are. Reconstruction threatens professional identities, sunk costs, and institutional alliances. Yet from an epistemic standpoint, it is the only option that aligns NPC with the evolution of objective knowledge rather than with the preservation of a belief system.

The final option is obsolescence through displacement. If NPC does not choose reconstruction, it may still be displaced by external forces. As scrutiny of measurement practices intensifies, and as alternative frameworks grounded in falsifiable claims emerge, institutions that cannot adapt will lose authority regardless of their history. This is not punishment; it is selection. In Dawkins’ terms, memeplexes persist until they are outcompeted by frameworks better suited to their environment. An HTA ecosystem that begins to demand measurement rather than numerical plausibility will have no use for institutions that cannot supply it.

The conclusion is therefore stark. NPC's future is not a question of strategy or branding. It is a question of epistemic choice. It can continue to function as a stabilizer of false measurement, retreat into descriptive irrelevance, or undertake the difficult work of reconstruction around admissible measurement and falsifiable claims. What it cannot do is remain as it is and still claim scientific authority. Once arithmetic without measurement is recognized for what it is, the space NPC currently occupies either collapses or is rebuilt on fundamentally different terms.

3. NEXT STEPS: TRANSITION TO SINGLE-CLAIM MEASUREMENT

The results of LLM interrogation leave no middle path. The measurement cat is out of the bag, and any system that continues using QALYs, utilities, DALYs, or simulation modelling invites scientific ridicule.

DISOWN THE PRESENT BELIEF SYSTEM

The first step toward scientific rehabilitation is an unambiguous renunciation of the non-measurement architecture that has underpinned HTA decision-making for decades. The logic is not rhetorical but structural: if the axioms of representational measurement are violated at the foundation, then no amount of statistical sophistication, modelling embellishment, or “best practice guidelines” can rescue the outputs from incoherence. QALYs, ordinal utilities, DALYs, and reference-case simulations are not merely suboptimal, they are incompatible with any conception of measurement. They lack a legitimate scale type, violate the requirements for meaningful arithmetic, and cannot be integrated into a numerically coherent comparison across interventions. A belief system built on such constructs cannot be amended or partially retained; it must be disowned.

The QALY is the clearest illustration of this impossibility. It is constructed by multiplying ordinal preferences by time, a procedure that lacks dimensional justification and produces outputs that cannot be interpreted as measures of anything. Yet this fiction has persisted because it supplies administrators with a single number, something they can rank, apply a threshold, or negotiate against. The same is true for DALYs, whose lineage in burden-of-disease accounting does nothing to endow them with legitimate measurement properties. Reference-case simulation modelling compounds the error: it takes non-measures as inputs, adds speculation about future clinical and economic pathways, and then outputs a figure that is treated as if it were evidence. The entire apparatus survives only because reviewers, policymakers, and faculty have never been trained in measurement, and thus have lacked the conceptual tools to recognize that these constructs are scientifically impossible.

Disowning the belief system is therefore not an admission of past failure but an unavoidable act of disciplinary self-correction. A field cannot progress while clinging to artefacts that cannot, even in principle, support falsifiable claims. NICE as the exemplar must say so explicitly, not as a symbolic gesture but as the precondition for rebuilding a scientifically credible evaluative architecture.

RECONSTRUCT HTA FROM MEASUREMENT UP

Once the non-measurement framework has been dismantled, reconstruction must begin from the only defensible starting point: measurement theory. There is no shortcut, no incremental reform, and no “middle way” in which QALYs or utilities are patched, modified, or reweighted. The fundamental lesson of representational measurement theory is simple: numbers have meaning only when the empirical structure of the attribute supports a specific scale type. If NICE, assuming it still exists, wants to produce claims that can be evaluated, replicated, and falsified, then it must adopt scale types capable of sustaining the arithmetic it wishes to perform.

For manifest attributes, events that are directly observable, such as hospital days avoided, therapy switching, medication possession, or relapse counts, the appropriate structure is a linear ratio scale. Such scales have a true zero, constant unit intervals, and permit the full suite of permissible arithmetic operations. They allow NICE to make legitimate statements about proportional differences and resource utilization grounded in evidence rather than interpretation. Crucially, ratio scales for manifest outcomes are already ubiquitous in health system data; they require no modelling conjecture and no constructed preferences.

For latent attributes, experiential or subjective constructs such as symptom burden, need-fulfilment, or patient-reported outcomes, the only valid transformation model is the Rasch model. Rasch provides logit-based ratio scales generated through conjoint simultaneous measurement of person ability and item difficulty. Without Rasch, subjective outcomes collapse to ordinal scores that cannot be meaningfully compared or used alongside manifest ratio measures. With Rasch, we acquire disease specific instruments that satisfy unidimensionality, invariance, and interval structure, enabling legitimate claims about latent change.

Reconstruction means reinstating the basic rule that every claim must have the appropriate measurement architecture. This is not an aesthetic preference but the necessary foundation for a science of evaluation. HTA becomes coherent only when claims rest on instruments that conform to the axioms of measurement, not on the administrative desire for a “single number.” The transition is radical only because the prior framework ignored measurement entirely.

MOVE TO PROTOCOL-BASED SINGLE CLAIMS

A measurement-valid HTA system cannot rely on summary constructs or composite evaluations. It must instead adopt a single-claim architecture in which each value claim stands alone, meeting the requirements of falsifiability, replication, and transparent reporting. This follows directly from the logic of science: a claim must be empirically testable, reproducible in the same target population, and supported by an agreed protocol that specifies exactly how evidence will be generated. Multi-outcome cost-effectiveness analysis cannot meet these standards because it integrates non-measures into speculative models and converts them into an imaginary “value for money” figure that cannot be falsified. Single claims, by contrast, are grounded in measurement.

Each claim begins with a precisely defined target population, typically patients initiated on a therapy within a defined window. This eliminates the ambiguity inherent in modelling lifetime populations or hypothetical cohorts. The endpoint must be measurement-valid; a linear ratio measure for manifest attributes or a Rasch logit ratio measure for latent ones. The protocol must articulate the evidence generation plan prospectively: how data will be collected, over what timeframe, using what analytic criteria, and under what conditions replication will be evaluated.

A single-claim architecture aligns HTA with the logic of clinical science. Claims are constructed in advance, not retrospectively assembled from model outputs. They are specific, narrow, and auditable. They permit comparability across therapies because each claim is defined in measurement terms rather than through the aggregation of unrelated dimensions. Importantly, single claims also eliminate the bureaucratic temptation to collapse multiple endpoints into an artificial summary. Instead, each outcome is assessed on its own merits, with its own ruler.

This shift does more than improve methodological defensibility; it transforms the institutional culture of evaluation. NICE, again as the exemplar, would no longer operate as a quasi-modelling agency but as a measurement-based adjudicator of empirically testable propositions. The result is a transparent, reproducible, and scientifically legitimate HTA system.

ADOPT THE MAIMON RESEARCH DISTANCE EDUCATION PROGRAM

Reconstruction requires education, and at present there is no conventional textbook, curriculum, or HTA training program that teaches measurement theory, Rasch, and protocol-based single-claim architecture in a scientifically coherent manner. The existing academic infrastructure remains trapped in the old belief system, recycling utilities, QALYs, and reference-case models as if these constructs were measures. Replacing that architecture therefore requires retraining, systematic, structured, and accessible to agencies, universities, and policy staff. The Maimon Research Distance Education Program is currently the only platform that provides this.

A NEW START IN MEASUREMENT FOR HEALTH TECHNOLOGY ASSESSMENT

For readers who are looking for an introduction to measurement that meets the required standards, Maimon Research has just released two distance education programs. These are:

- Program 1: Numerical Storytelling – Systematic Measurement Failure in HTA.
- Program 2: A New Start in Measurement for HTA, with recommendations for protocol-supported claims for specific objective measures as well as latent constructs and manifested traits.

Each program consists of five modules (approx. 5,500 words each), with extensive questions and answers. Each program is priced at US\$65.00. Invitations to participate in these programs will be distributed in the first instance to 8,700 HTA professionals in 40 countries.

More detail on program content and access, including registration and on-line payment, is provided with this link: <https://maimonresearch.com/distance-education-programs/>

The program builds HTA from measurement upward. It teaches representational measurement theory as the foundation for any evaluative claim. It trains participants in Rasch modelling, including item calibration, person-item maps, logit transformations, and the construction of valid, unidimensional latent-trait measures. It provides protocol templates that define how claims are constructed, evaluated, and replicated. It supplies checklists to ensure scale-type coherence, target population definition, and the exclusion of non-measures. It also addresses the institutional, pedagogical, and administrative barriers that have historically prevented HTA from adopting measurement standards.

Most importantly, the program replaces the HTA belief system with a scientific one. It does not attempt to “improve” QALYs or “modernize” utilities. It demonstrates why those constructs are impossible and shows how to build a new system from first principles that produces claims that can be defended in court, in peer review, and in public policy. The program equips faculty and decision-makers with the conceptual tools they were never given, tools that allow them to recognize the difference between a measure and a number masquerading as one. Adopting the program is therefore not supplementary; it is the enabling step. Without a trained workforce, we cannot transition to single-claim measurement.

ACKNOWLEDGEMENT

I acknowledge that I have used OpenAI technologies, including the large language model, to assist in the development of this work. All final decisions, interpretations, and responsibilities for the content rest solely with me.

REFERENCES

¹ Stevens S. On the Theory of Scales of Measurement. *Science*. 1946;103(2684):677-80

² Krantz D, Luce R, Suppes P, Tversky A. Foundations pf Measurement Vol 1: Additive and Polynomial Representations. New York: Academic Press, 1971

³ Rasch G, Probabilistic Models for some Intelligence and Attainment Tests. Chicago: University of Chicago Press, 1980 [An edited version of the original 1960 publication]

⁴ Wright B. Solving measurement problems with the Rasch Model. *J Educational Measurement*. 1977;14(2):97-116